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1. CAVITY QED IN DIFFERENT REPRESENTATIONS OF CCR

Although the notion of entanglement between atomic and electromagnetic
degrees of freedom plays a central role in quantum computing architecture based
on cavity QED (Pellizzari et al., 1995; Raimond et al., 2001; Walther, 2002; Fisher
et al., 2002; Mundt et al., 2002; McKeever et al., 2003; Sauer et al., 2004; Zeng et
al., 2005; Zhou et al., 2005), the very concept of entanglement leads to conceptual
difficulties if quantum vacuum comes into play (cf. uniqueness of the vacuum
versus violation of the Bell inequality (Summers and Werner, 1987a,b), problems
with teleportation of quantum fields (Laiho et al., 2000), ambiguous entanglement
with vacuum (van Enk, 2005; Pawłowski and Czachor, 2006)). One of the problems
is that the electromagnetic field can be quantized in different representations of
canonical commutation relations (CCR). As shown in Pawłowski and Czachor
(2006) the degree of entanglement is a representation-dependent property, and it
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is not clear which representations are really physical. The problem is a part of a
wider and ongoing discussion on different quantization paradigms.3

Now, can the available experimental data distinguish between different rep-
resentations of CCR? The answer is less obvious than one might expect. In this
paper we will try to clarify the status of some data from cavity QED, and then
discuss possibilities of more definitive tests.

We first analyze at a representation independent level the simple problem
of Rabi oscillation of a two-level atom in an ideal cavity (for technicalities
we refer to Wilczewski and Czachor). In the second step we take into account
two types of decoherence that should occur in realistic experiments. Following
(Bonifacio et al., 2000) we distinguish between dissipative and nondissipative
decoherence and model dissipation employing the results of Chough (1999).
Then we compare theoretical predictions based on irreducible representations
with the experimental data of the Paris group (Brune et al., 1996). Our conclu-
sions are basically consistent with both (Bonifacio et al., 2000) and (Chough,
1999): The observed decoherence appears to be entirely of a nondissipative type,
but it is not clear why the effect of dissipation is invisible. Perhaps the fact
that a photon is with probability 1 absorbed by the atom at times separated
by the Rabi period leads to a sort of Zeno effect. This point requires further
experimental and theoretical studies, and is beyond the scope of the present
paper.

Assuming that Rabi oscillations indeed do not reveal observable damping
due to energy dissipation we ask to what extent the experiment can distinguish
between reducible and irreducible representations of CCR. In physical terms the
question can be translated as follows: How many oscillators do we need to model
quantum fields? The standard answer is that we need one oscillator per mode.
We show that in reducible representations the data only set certain limitations
on the number of oscillators, and this number is independent of the number of
modes.

Finally, we suggest that one should repeat the measurements reported in
Brune et al. (1996) with better cavities, finer time resolution, and monitor the
Rabi oscillation for longer times. The point is that the decay due to experimental
imprecisions may mask quantum beats of a completely new type and origin. In
principle, the beats can be observed in a form of vacuum collapses and revivals,

3 Different approaches to quantization involve local (Haag, 1996) and nonlocal (Efimov, 1977) fields,
or path-intergral (Mosel, 2003), geometric (Woodhouse, 1994), twistor (Penrose, 1968), star-product
(Bayen et al., 1978), quantum-logic (Finkelstein, 1996), and coherent-state quantizations (Berezin,
1975; Perelomov, 1986), to name a few. The approach we advocate, based on reducible represen-
tations, is closer to what Finkelstein calls general quantization, or regularization by quantization
(Finkelstein, 2006). In fact, this is precisely an example of quantization by means of generalized
covariance systems (Naudts and Kuna, 2001).
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the effect occurring in reducible N -representations.4 Observation of the revival
would be of fundamental importance for our understanding of field quantization.

2. RABI OSCILLATIONS AT A REPRESENTATION-INDEPENDENT
LEVEL

Similarly to Brune et al. (1996) we work with the Jaynes-Cummings model
(Jaynes and Cummings, 1963; Allen and Eberly, 1975). The crucial point is that
we begin with solving Heisenberg equations of motion for the two-level atom at
a representation independent level (A standard-representation Heisenberg-picture
calculation can be found in Ackerhalt and Rza̧żewski (1975)). The CCR algebra,
in its general form, reads

[ak, a
∗
k′ ] = δkk′Ik, (1)

Ik commute with all the other operators, and I ∗
k = Ik . We do not assume that Ik

is proportional to the identity (this generality will pay, as we shall see shortly).
By Schur’s lemma Ik is necessarily proportional to the identity only in irreducible
representations. We employ the usual notation (Allen and Eberly, 1975) where
Rl = σl/2, R± = R1 ± iR2, σl are the Pauli matrices, and g is a complex cou-
pling parameter. We assume there exists a free-field Hamiltonian H0 satisfying
[ak,H0] = ωkak , [a∗

k , H0] = −ωka
∗
k . Note that H0 cannot, in general, be given by∑

k ωka
∗
k ak; the latter works only for some representations (e.g. for irreducible

representations with Ik equal to an identity, or for the reducible ‘N = 1’ represen-
tation; ‘N > 1’ reducible representations require a different construction).

Let us now select a frequency ωp = | p| = ω and assume that only this
frequency couples to the two-level system. We also split H0 into two parts: H⊥

0

commuting with ap and a∗
p, and H

‖
0 = ωNp, where [ap,Np] = ap, [a∗

p,Np] =
−a∗

p. The model is given by the full Hamiltonian

H = ω0R3 + H0 + gR+ap + ḡR−a∗
p. (2)

Solving the Heisenberg picture equations we find

R3(t) = R3

(

1 − 2|g|2X sin2(�Rt)

�2
R

)

+
(

�

2

sin2(�Rt)

�2
R

− i
sin(2�Rt)

2�R

)

gR+ap

+
(

�

2

sin2(�Rt)

�2
R

+ i
sin(2�Rt)

2�R

)

ḡR−a∗
p, (3)

4 N = 1 representations occur if in the harmonic oscillator energy formula En = h̄ω(n + 1/2) the
number ω is not a parameter but an eigenvalue of some operator, that is, a quantum number. The
representations with N > 1 correspond to a gas consisting of N bosonic noninteracting oscillators
of such a type, and vacuum is their zero-temperature Bose-Einstein condensate. Predictions of the
standard theory are reconstructed in the weak limit N → ∞, but finite-time experiments cannot
distinguish between N = ∞ and N finite but large.
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where � = ω0 − ω, �R =
√

�2/4 + |g|2X, and

X = (R3 + 1/2)Ip + a∗
pap. (4)

The next important notion that can be introduced at a general level is the displace-
ment operator

D(z) = exp
∑

k

(
zka

∗
k − z̄kak

)
. (5)

Acting with D(z) on a vacuum vector we obtain a coherent state. Its form depends
on what is meant by vacuum in a given representation.

We will not discuss in more detail the irreducible representations since, as
shown in Wilczewski and Czachor, they all yield physically equivalent and well
known results. Instead, we directly turn to the ‘N < ∞’ reducible representation
introduced in Czachor (2000) and worked out in many details in Czachor (2003,
2004); Czachor and Naudts (in print).

3. N < ∞ REPRESENTATION

The representation is constructed as follows. For simplicity we ignore here
the polarization degree of freedom (see however Czachor (2000, 2003, 2004);
Czachor and Naudts (in print)). Take an operator a satisfying [a, a∗] = 1 and the
kets |k〉 corresponding to standing waves in some cavity. We define

ak = |k〉〈k| ⊗ a, Ik = |k〉〈k| ⊗ 1. (6)

The operators (6) satisfy (1), where δkk′ is the 3D Kronecker delta. The fact that
Ik is not proportional to the identity means that the representation is reducible.
In our terminology this is the ‘N = 1 representation’. Its Hilbert space H is
spanned by the kets |k, n〉 = |k〉|n〉, where a∗a|n〉 = n|n〉. Such a Hilbert space
represents essentially a single harmonic oscillator of indefinite frequency (for
physical motivation cf. Czachor (2000, 2003) and the Appendix in Wilczewski
and Czachor). An important property of the representation is that

∑
k Ik = I

is the identity operator in H. A vacuum of this representation is given by any
state annihilated by all ak . The vacuum state is not unique and belongs to the
subspace spanned by |k, 0〉. In our notation a N = 1 vacuum state reads |O〉 =∑

k Ok|k, 0〉 and is normalized by
∑

k |Ok|2 = ∑
k Zk = 1, Zk = |Ok|2. Such

a vacuum represents a single-oscillator ground-state wavepacket. As shown in
Czachor (2003, 2004) in a fully relativistic formulation the maximal probability
Z = maxk{Zk} is a Poincaré invariant and plays a role of renormalization constant.
For N ≥ 1 the representation space is given by the tensor powerH = H⊗N , i.e. we
take the Hilbert space of N (bosonic) harmonic oscillators. Let A : H → H be any
operator for N = 1. We denote A(n) = I⊗(n−1) ⊗ A ⊗ I⊗(N−n), A(n) : H → H, for
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1 ≤ n ≤ N . For arbitrary N the representation is defined by

ak = 1√
N

N∑

n=1

a
(n)
k , I k = 1

N

N∑

n=1

I
(n)
k , (7)

[ak, a
∗
k′] = δkk′I k,

∑

k

I k = I = I⊗N (8)

and the N -oscillator vacuum is the N -fold tensor power of the N = 1 case, a kind
of Bose-Einstein condensate consisting of N wavepackets:

|O〉 = |O〉 ⊗ · · · ⊗ |O〉 = |O〉⊗N. (9)

The free-field Hamiltonian is, for N = 1 and ωk = |k|,
H0 =

∑

k

ωka
∗
k ak =

∑

k

ωk|k〉〈k| ⊗ a∗a. (10)

In each eigensubspace with fixed |k〉 the operator H0 is just an ordinary Hamil-
tonian of the oscillator with frequency ωk . Let us note that one can work also
with

H0 = 1

2

∑

k

ωk(a∗
k ak + aka

∗
k ) =

∑

k

ωk|k〉〈k| ⊗ a∗a + 1

2

∑

k

ωkIk. (11)

The vacuum term is a well-defined Hermitian operator, and can be removed by
a well-defined unitary transformation. This is an example of a procedure that
can be termed, after Finkelstein, “regularization by quantization”.3 For arbitrary
N the generator of free field evolution is the Hamiltonian of N noninteracting
oscillators, i.e. H 0 = ∑N

n=1 H
(n)
0 . Let us stress that H 0 should not be confused

with
∑

k ωka
∗
kak . The operator a∗

kak nevertheless occurs in (4) and thus plays
an important role in the Jaynes-Cummings problem. Our definition of H 0 im-
plies that [ak,H 0] = ωkak which is the formula we required at the representation
independent level.

A monochromatic coherent state with frequency ω is given by the usual
formula

|z〉 = exp
(
za∗

p − z̄ap

)|O〉. (12)

Starting with the excited state and a vacuum field, |�〉 = |+〉|O〉, we find

w(t) = 〈�|R3(t)|�〉

= 1

2
−

N∑

s=0

|g|2 s

N

sin2
√

�2/4 + |g|2s/Nt

�2/4 + |g|2s/N
(

N

s

)

Zs
p(1 − Zp)N−s . (13)

So this is the vacuum Rabi oscillation in the reducible representation, and the
last term is the binomial distribution for N trials, with single-trial probability of
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success Zp. There are N different frequencies and thus collapses and revivals will
necessarily occur if 1 < N < ∞. For N large enough the binomial distribution
can be approximated by a Gaussian, and one can show that for small Z the
parameter that controls the Rabi oscillation is effectively the product NZ (see
below, Sec. VIII). The limit N → ∞ (with fixed Z) can be computed on the basis
of the law of large numbers for the binomial distribution,

lim
N→∞

w(t) = 1

2
− |g|2Zp

sin2
√

�2/4 + |g|2Zpt

�2/4 + |g|2Zp

, (14)

i.e. the frequency s/N approaches the probability of success in a single trial of the
Bernoulli process, s/N → Zp. (14) is essentially the standard Jaynes-Cummings
prediction, but with a modified coupling. It is clear that the measurable coupling
is not just g but rather its renormalized version gph = g

√
Z. Let us note that this is

equivalent to bare charge renormalization: eph = e0

√
Z. Z is therefore an analogue

of the renormalization constant Z3 and χk = Zk/Z plays a role of a cut-off.5

Both the cut-off and the renormalization constant occur here automatically.
If we assume that for optical frequencies Zp = maxk{Zk} = Z (i.e. χp = 1) the
agreement between the irreducible case and the N → ∞ limit of the reducible one
is exact. The law of large numbers plays here a role of a correspondence principle
with the standard formalism, a property not limited only to the Jaynes-Cummings
example.

With this background in mind one can easily generalize the discussion to
thermal and coherent states, and mixed atomic initial condition (Wilczewski and
Czachor). Let p+ and p− denote initial probabilities of finding the atom in,
respectively, excited and ground states. Replacing vacuum by a thermal light with
the distrubution

P(n) = n̄n

(1 + n̄)(n+1)
, (15)

we find, p+(t) = w(t) + 1/2,

p+(t) = p+ −
N∑

s=0

(
N

s

)

Zs
p(1 − Zp)N−s

∞∑

n=0

P(n)
(
p+ − p−n̄

1 + n̄

)

5 Let us note that the cut-off occurs neither in the Hamiltonian nor in the CCR commutators. In effect,
when we compute eigenvalues of the Hamiltonian we will not find there any dependence on Zk .
This observation is important since it shows that our ‘regularization by quantization’ (in the sense of
Finkelstein (2006)) is mathematically completely different from the usual ‘regularization by cut-off’,
in spite of the fact that for N → ∞ they look very similar at the level of averages. This similarity
between the two ways of regularizing may be very confusing and often leads to misunderstandings.
Perhaps, the simplest exercise that may help to see the difference is to compute the spectrum of the
free Hamiltonian, compare it with average energy, and understand why the vacuum energy is finite
for finite N , even though the set of frequencies is infinite.
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× |g|2 (n + 1)s

N

sin2
(
t

√
�2

4 + |g|2 (n+1)s
N

)

�2/4 + |g|2(n + 1)s/N
. (16)

The limit N → ∞

p+(t) = p+ −
∞∑

n=0

P(n)
(
p+ − p−n̄

1 + n̄

)

× |gph|2χp

sin2
(
t
√

�2/4 + |gph|2(n + 1)χp

)

�2/4 + |gph|2(n + 1)χp

, (17)

is, up to χp, known from irreducible representations. For a coherent state |z〉 and
p+ = 1 we find

p+(t) = 1 −
N∑

s=0

∞∑

n=0

|gph|2(n + 1)

Z

s

N

sin2
(
t
√

�2/4 + |gph|2(n + 1)s/(ZN)
)

�2/4 + |gph|2(n + 1)s/(ZN )

× |z√ s
N

|2n

n!
e−|z

√
s
N

|2
(

N

s

)

Zs
p(1 − Zp)N−s .

The limiting form, for N → ∞, is again familiar

lim
N→∞

p+(t) = 1 −
∞∑

n=0

|gph|2(n + 1)χp

× sin2
(
t
√

�2/4 + |gph|2(n + 1)χp

)

�2/4 + |gph|2(n + 1)χp

|zphχ
′
p|2n

n!
e−|zphχ

′
p |2 . (18)

For the same reason as before we obtain the standard formula but with the cut-offs
χp = Zp/Z, χ ′

p = √
χp, and renormalized eph = e0

√
Z, zph = z

√
Z.

4. DISSIPATIVE AND NONDISSIPATIVE DECOHERENCE

An analysis of realistic experiments must take into account decoherence.
There are two main sources of decoherence that were identified in the literature in
the context of the experiment of Brune et al. (1996).

The analysis of dissipation based on quantum trajectories approach (Chough,
1999, 1997) leads to the conclusion that the damping due to energy loss in the
cavity should have the form pκ,+(t) = e−κtp+(t), where p+(t) is the probability
of finding the atom in the excited state in an ideal cavity, and 2κ = 1/Tcav. The
factor 2 takes into account the fact that energy is not dissipated if the atom is in
the excited state and there is no photon in the cavity. Obviously, for t → ∞ the
atom is with certainty found in its ground state.
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The second source of decoherence is nondissipative in nature and was dis-
cussed in Bonifacio et al. (2000). It originates from the fact that the data collected
at time t should not be compared directly with ρ(t) describing the state computed
on the basis of first principles, but with the average

ρ�t (t) =
∫ ∞

0
dt ′ p�t (t, t

′)ρ(t ′), (19)

where ρ(t ′) is the first-principles state and p�t (t, t ′) describes our lack of
knowledge as to the exact duration of time evolution. The data from Brune
et al. (1996) involve a sample of 90 points selected from the time inter-
val 0 < t < 90 µs. Therefore the time-of-measurement uncertainty may be as-
sumed to satisfy 0 < �t < 1 µs, which indeed turns out to reasonably model
the data. However, it is not evident if this is really the true explanation of
the discrepancy. The problem is that another value of �t is also mentioned in
Bonifacio et al. (2000), namely �t = 0.01t . It would lead to a linear growth
of �t between 0.01 µs and 0.9 µs, and then the agreement between theory and
experiment is worse.

Nevertheless, leaving aside this and similar subtleties, we may use the prob-
ability distribution introduced in Bonifacio et al. (2000)

p�t (t, t
′) = e−t ′/�t

�t

(t ′/�t)t/�t−1


(t/�t)
. (20)

In all the representations discussed in this paper we have arrived at atomic proba-
bilities involving terms of the form

p+(t) = A + B sin2 �t. (21)

The associated effective probabilities then read

p�t,κ,+(t) =
∫ ∞

0
dt ′ p�t (t, t

′)e−κt ′ (A + B sin2 �t ′)

= (1 + κ�t)−t/�t

[

A + 1

2
B

(

1 −
[
1 +

( 2��t

1 + κ�t

)2]− t
2�t

× cos
( t

�t
arctan

2��t

1 + κ�t

)
)]

. (22)

The overall damping factor (1 + κ�t)−t/�t is the deformed exponential (Naudts,
2002) occurring in non-extensive thermodynamics (Tsallis, 1988), and whose
links to Gamma-function averages are well known (Wilk and Włodarczyk, 2000,
2001).
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5. EXPERIMENT OF THE PARIS GROUP—VACUUM
RABI OSCILLATION

Let us first concentrate on the vacuum Rabi oscillation observed in Brune
et al. This part of the data is particularly intriguing and plays an important role for
calibration of the experimental setup. Theoretical fits shown in Brune et al. (1996)
were based on sinusoids exponentially damped by exp(−t/T ) with T = 40 µs
(Raimond, private communication). It is essential that the parameter T was much
smaller from the reported value Tcav = 220 µs of the cavity lifetime. The coupling
constant employed in the fits was gph/π = 47 kHz, and the cavity was filled with
0.8 K thermal light (average number of photons n̄ = 0.05). Brune et al. tried to
explain the difference between T and Tcav by means of dark counts and collisions
with background gas.

The role of dark counts and collisions was analyzed in detail in Chough
(1999), but the conclusion was negative — the source of the discrepancy had
to be different. The analysis presented in Chough (1999) revealed also another
problem with the data: The cavity lifetime Tcav = 220 µs should induce a shift of
excited-state probability towards zero (as in Fig. 1, left part), but there is no trace
of this phenomenon.

Let us now turn to the solution of the discrepancy between T and Tcav in terms
of nondissipative decoherence, suggested in Bonifacio et al. (2000). In Fig. 1 we
show the prediction involving both kinds of decoherence, and based on irreducible
representations of CCR. The initial probability is p+ = 0.99. For the left plots the
damping factor is κ = 1/(2Tcav) = 106/440 Hz, and three different values of �t

are compared. The value �t ≈ 0.5 µs (suggested in Bonifacio et al. (2000)) would
reasonably reproduce the data if one neglected the energy decay, a fact consistent
with the observations from Chough (1999). In the right plots κ = 0. For times
0 < t < 15 µs the data are then consistent with �t = 0.7 µs. The next peak is
well described by �t = 0.3 µs, then again the minimum looks like �t = 0.7 µs,
and finally we can use �t = 0.5 µs.

20 40 60 80
t�Μs�

0.2

0.4

0.6

0.8

p��t�

20 40 60 80
t�Μs�

0.2

0.4

0.6

0.8

p��t�

Fig. 1. Standard theory of p+(t) for three different uncertainties of atomic time-of-flight measure-
ments: �t = 0.3 µs (dotted), �t = 0.5 µs (full, suggested in Bonifacio et al. (2000)), �t = 0.7 µs
(dashed). Left plots: Tcav = 220 µs, κ = 1/(2Tcav). Right plots: κ = 0.
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The fits are quite sensitive to small variations of �t , but generally the solution
is acceptable if one could explain why κ = 0 is here meaningful. The problem is
a serious one since the whole logic of the experiment is based on nonnegligible
dissipation (cavity decay eliminates the maser efect).

6. EXPERIMENT VS. N < ∞ REPRESENTATIONS

Let us now turn to the case of N < ∞ representations. The first question
we have to clarify is what is the role of κ for predictions based on reducible
representations. In Fig. 2 (left) we compare the standard prediction from Fig. 1 for
Tcav = 220 µs and �t = 0.5 µs (dotted) with an analogous result for the reducible
N = 2000, Z = 0.1 representation (full). The two curves differ by less than exper-
imental error bars, and it is clear that the finite-N representations suffer from the
same problem as the irreducible ones: For κ = 1/(2Tcav) > 0 the Lindblad-type
plots are shifted downwards with respect to the data. This is not surprising, since
for N → ∞ the reducible representation should reconstruct predictions of the
irreducible one.

In Fig. 2 (right) we show the same situation as in Fig. 2 (left) but now with
κ = 0. The data are consistent with NZ = 200. It is very important to keep in
mind that for NZ > 200 the agreement between the two theories will be even
better. This is why this type of experiment will not able to produce an exact
value of NZ, but only set a lower bound on the value of this parameter. Fig. 3
shows analogous plots for coherent states. Collecting all the avaliable data we can
estimate a common lower bound following from various experimental situations
— here in all the plots the lower bound NZ > 200 is enough to have predictions
experimentally indistinguishable from the standard theory. Possibility of a test
directly determining NZ is discussed in the next section.

20 40 60 80
t�Μs�

0.2

0.4

0.6

0.8

p��t�

20 40 60 80
t�Μs�

0.2

0.4

0.6

0.8

p��t�

Fig. 2. Comparison of the standard theory of p+(t) (dotted) with the reducible representation
characterized by N = 2000, Z = 0.1 (full). The left plots, κ = 1/(2Tcav) = 106/440 Hz, are shifted
downwards with respect to the data. The right plots employ κ = 0. All the curves correspond to
�t = 0.5 µs. Predictions of the two theories differ by less than experimental error bars.
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Fig. 3. Comparison of the standard theory of p+(t) (dotted) with the reducible representation
characterized by N = 2000, Z = 0.1 (full). Coherent states with n̄ = 0.4 (left), n̄ = 0.85 (right),
and κ = 0, �t = 0.5 µs. Initially the atom is in the upper state (p+ = 1).

7. CAN WE DIRECTLY MEASURE N Z?

Reducible and irreducible representations are idistinguishable as long as the
beats typical of finite N are masked by the decay caused by a nonzero �t . In Fig. 4
we show the dynamics of p+(t) monitored with the resolution �t = 0.005 µs. We
assume that initially the atom is in the upper level and there are no photons (exact
vacuum state at zero temperature). The plots reveal two important features of finite-
N representations. First of all, even in exact vacuum we find beats analogous to
what is known from irreducible-representation coherent states. Secondly, the first
revival occurs after a time that depends effectively on the product NZ, and not
separately on N and Z. To understand why this has to happen we replace the
binomial distribution by its asymptotic form, valid for large N ,

(
N

s

)

Zs
p(1 − Zp)N−s ≈

(
N

s

)

Zs(1 − Z)N−s

≈ e
− (s−NZ)2

2NZ(1−Z)

√
2πNZ(1 − Z)

≈ e− (s−NZ)2

2NZ√
2πNZ

. (23)
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Fig. 4. Reducible representations for NZ = 200, κ = 0, and �t = 0.005 µs. Vacuum Rabi oscilla-
tion is monitored for a longer time. Left plot: N = 600, Z = 1/3. Right plot: N = 3000, Z = 1/15.
For small Z and large N the revival occurs after a time that depends only on the single parameter
NZ.
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The shape of the Gaussian is controlled mainly by the product NZ. The smaller Z

the less important its exact value (the last approximate equality holds for small Z).
Increasing N with Z kept constant we shift the first revival more to the right. In
the limit N → ∞ the first revival is shifted to infinity, and we recover the standard
undamped oscillation. So, the absence of the revival in an experiment can only
set a lower bound on NZ, and is not a proof that the physical representation is
irreducible.

8. FINAL REMARKS

It would be interesting to analyze the other experiments involving finite-level
atoms, especially those with masers and mazers (Rempe et al., 1987; Varcoe et
al., 2000, 2004; Lamb et al., 1999) but a technical difficulty is that exact solutions
are not there available at the moment. However, the experiments testing spectra of
light (Thompson et al., 1992; Boozer et al., 2004; Miller et al., 2005; Boca et al.,
2004; Maunz et al., 2005) in cavity QED are another realistic goal in this context.
We have already computed the vacuum Rabi splitting, with the conclusion that
for N → ∞ we reconstruct the standard results, which is another example of the
correspondence principle. The work on comparison of the theory with experiment
is in progress, and we will present the results in a separate paper.

The structure of vacuum collapses and revivals is like a fingerprint of the
representation. The parameter NZ determines the distance in time between the
reviving peaks. For physical reasons Z must be a very small nonzero number, and
thus N has to be very large, although finite. Confirmation that N < ∞ is phys-
ical would have fundamental consequences for renormalization theory, vacuum
energy with all its implications, and studies of entanglement in cavity QED. The
correspondence principle turns N < ∞ theories into generalizations of standard
quantum optics. Our discussion explains why it is very unlikely that N < ∞ can
be found inconsistent with experiment. And this is interesting in itself.

ACKNOWLEDGMENTS

We are indebted to M. Brune for the data, and Y.-T. Chough, D. R. Finkel-
stein, S. Haroche, J. Naudts, G. Nogues, and W. Schleich for various comments.
This work was done as a part of the Polish Ministry of Scientific Research and
Information Technology (solicited) project PZB-MIN 008/P03/2003.

REFERENCES
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